6 research outputs found

    A Deep Learning Sequential Decoder for Transient High-Density Electromyography in Hand Gesture Recognition Using Subject-Embedded Transfer Learning

    Full text link
    Hand gesture recognition (HGR) has gained significant attention due to the increasing use of AI-powered human-computer interfaces that can interpret the deep spatiotemporal dynamics of biosignals from the peripheral nervous system, such as surface electromyography (sEMG). These interfaces have a range of applications, including the control of extended reality, agile prosthetics, and exoskeletons. However, the natural variability of sEMG among individuals has led researchers to focus on subject-specific solutions. Deep learning methods, which often have complex structures, are particularly data-hungry and can be time-consuming to train, making them less practical for subject-specific applications. In this paper, we propose and develop a generalizable, sequential decoder of transient high-density sEMG (HD-sEMG) that achieves 73% average accuracy on 65 gestures for partially-observed subjects through subject-embedded transfer learning, leveraging pre-knowledge of HGR acquired during pre-training. The use of transient HD-sEMG before gesture stabilization allows us to predict gestures with the ultimate goal of counterbalancing system control delays. The results show that the proposed generalized models significantly outperform subject-specific approaches, especially when the training data is limited, and there is a significant number of gesture classes. By building on pre-knowledge and incorporating a multiplicative subject-embedded structure, our method comparatively achieves more than 13% average accuracy across partially observed subjects with minimal data availability. This work highlights the potential of HD-sEMG and demonstrates the benefits of modeling common patterns across users to reduce the need for large amounts of data for new users, enhancing practicality

    Mosquito host-seeking diel rhythm and chemosensory gene expression is affected by age and Plasmodium stages

    Get PDF
    Malaria parasites can affect vector-related behaviours, increasing transmission success. Using Anopheles gambiae and Plasmodium falciparum, we consider the effect of interaction between infection stage and vector age on diel locomotion in response to human odour and the expression of antennal chemosensory genes. We identified age-dependent behavioural diel compartmentalisation by uninfected females post-blood meal. Infection disrupts overall and diel activity patterns compared with age-matched controls. In this study, mosquitoes carrying transmissible sporozoites were more active, shifting activity periods which corresponded with human host availability, in response to human odour. Older, uninfected, blood-fed females displayed reduced activity during their peak host-seeking period in response to human odour. Age- and infection stage-specific changes in odour-mediated locomotion coincide with altered transcript abundance of select chemosensory genes suggesting a possible molecular mechanism regulating the behaviour. We hypothesize that vector-related behaviours of female mosquitoes are altered by infection stage and further modulated by the age post-blood meal of the vector. Findings may have important implications for malaria transmission and disease dynamics

    The Role of Gender in the Importance of Risk Factors for Coronary Artery Disease

    Get PDF
    Identification of risk factors and their importance in different genders is essential in order to prevent, diagnose, and manage coronary artery disease (CAD) properly.) The present study aims to investigate the role of gender in the distribution of different risk factors in ischemic heart disease.)is study is a cross-sectional study. More than one thousand (N = 1012) patients referring to the Nuclear Medicine Department in Namazi Hospital, Shiraz, Iran, from March 2017 to March 2018 were studied.) The patients' demographic data and their clinical history were collected.) The results of the myocardial perfusion scan were recorded and compared between groups. Statistical analysis was implemented by SPSS version 18.0, and P values below 0.05 were considered statistically significant. Out of the 1012 patients participating in this study, 698 (69%) were female and 314 (31%) were male. Ischemic heart disease (IHD) was significantly higher in men compared to women (19.1% versus 14.2%).) The higher levels of systolic and diastolic blood pressures, along with older age, were a significant risk factor in women (P < 0.05). Previous myocardial infarction (MI), diabetes mellitus (DM), hypertension (HTN), and hyperlipidemia (HLP) had a strong correlation with IHD in our female population. Regarding the male subjects, previous MI and HLP had a lower correlation with IHD. Based on our logistic regression models, investigation of the simultaneous effects of risk factors on IHD showed that previous MI is the most effective risk factor in females (OR = 3.93) mostly in terms of residual ischemia in the infarcted myocardium. In the male population, on the other hand, HTN was identified as the most effective risk factor for IHD (OR = 2). In conclusion, we found that older age, higher blood pressure, DM, previous MI, HTN, and HLP have a significant association with IHD in the female population, whereas older age, DM, and HTN were significant risk factors for IHD in males. Also, the most effective factor for women was previous MI, while it was HTN for the male population. Key Words: HEART-DISEASE; CARDIOVASCULAR-DISEASE; MYOCARDIAL-INFARCTION; BLOOD-PRESSURE; FOLLOW-UP; WOMEN; MEN; LIPIDS; TRENDS; SE

    Mosquito host-seeking diel rhythm and chemosensory gene expression is affected by age and Plasmodium stages

    Get PDF
    Malaria parasites can affect vector-related behaviours, increasing transmission success. Using Anopheles gambiae and Plasmodium falciparum, we consider the effect of interaction between infection stage and vector age on diel locomotion in response to human odour and the expression of antennal chemosensory genes. We identified age-dependent behavioural diel compartmentalisation by uninfected females post-blood meal. Infection disrupts overall and diel activity patterns compared with age-matched controls. In this study, mosquitoes carrying transmissible sporozoites were more active, shifting activity periods which corresponded with human host availability, in response to human odour. Older, uninfected, blood-fed females displayed reduced activity during their peak host-seeking period in response to human odour. Age- and infection stage-specific changes in odour-mediated locomotion coincide with altered transcript abundance of select chemosensory genes suggesting a possible molecular mechanism regulating the behaviour. We hypothesize that vector-related behaviours of female mosquitoes are altered by infection stage and further modulated by the age post-blood meal of the vector. Findings may have important implications for malaria transmission and disease dynamics
    corecore